

Спутники: технологии широкого покрытия улучшают связь

Спутники: технологии широкого покрытия улучшают связь

Nº	Раздел	Номера страниц
1	Виды спутниковой связи	3–4
2	Рынок услуг беспроводной спутниковой связи и сервисов развлечений в полете (wIFEC)	5–8
3	Рынок мобильной спутниковой телефонной связи (MSS)	9–10
4	Рынок спутниковой связи на базе специальных терминалов с компактными антеннами (VSAT-станций)	11–14

Мировой рынок космических технологий и услуг формируют два направления – downstream и upstream

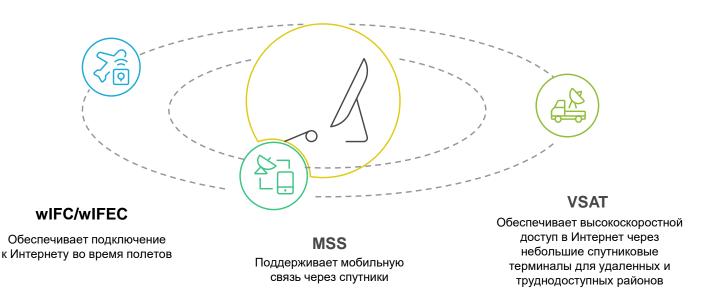
Объем мирового рынка космических технологий и услуг (space market) по направлениям downstream и upstream в 2024 г., млрд долл. США

DOWNSTREAM - \$ 157

Источник: Space Economy Report (Novaspace, 2024 г.).

Мировой рынок космических технологий и услуг охватывает всю совокупность деятельности по исследованию, освоению и использованию космоса, включая два ключевых сегмента: наземную инфраструктуру (upstream) и спутниковые услуги и сервисы (downstream).

По оценкам аналитической компании Novaspace, общий объем мирового космического рынка в 2024 г. составил 224 млрд долл. США. 30% рынка пришлось на сегмент upstream и 70% — на сегмент downstream. Помимо этих сегментов, мировая космическая экономика включает цифровые решения, использующие космическую инфраструктуру, такие как прогноз погоды, спутниковая навигация, телевидение и т. д. Поставщики этих услуг обычно не считают себя частью космической экономики, так как ориентированы на предоставление услуг «на земле». Объем рынка цифровых спутниковых решений в 2024 г. составил 308 млрд долл. США (включая доходы от услуг — 219 млрд долл. США и от устройств — 89 млрд долл. США).


Согласно данным Novaspace, основные игроки upstreamсегмента сосредоточены в Северной Америке, Европе и Азии, где они активно используют преимущества высокого внутреннего спроса. На развитых рынках этих регионов сохраняется устойчивый интерес к передовым спутниковым технологиям. Европа и Китай переходят к более активному использованию спутниковых технологий, следуя примеру раннего успеха подобных программ в США. Рост сегмента upstream в настоящее время обеспечивается масштабным развертыванием коммерческих низкоорбитальных группировок (Low Earth Orbit – LEO) для связи и зондирования Земли, на которые приходится около 60% его объема. Рыночная доля государственных организаций в upstream-сегменте составляла в 2024 г. около 70%.

Downstream-сегмент, ориентированный на массовое использование спутниковых сервисов, в меньшей степени зависит от государственной поддержки – на государственные организации приходилось около 13% рынка в 2024 г. Рост рынка downstream напрямую связан с демографическими изменениями и повышением уровня жизни, что стимулирует спрос на услуги связи и навигации.

Внедрение спутникового широкополосного доступа в Интернет поддерживается региональными государственными инициативами, такими как американский Фонд цифровых возможностей для сельских территорий (Rural Digital Opportunity Fund – RDOF) и аналогичные программы в других странах. Развитие спутниковой связи также стимулируется коммерческими проектами, такими как создание группировок негеостационарных спутников (Non-Geostationary Orbit – NGSO), требующих многомиллиардных инвестиций, например, проекты американской компании SpaceX (Starlink), канадского оператора Telesat, российской компании «Бюро 1440».

На рынке downstream-услуг по-прежнему лидирует спутниковое телевидение несмотря на постепенное снижение его доли. Однако рост этого сегмента все в большей степени определяется спросом на услуги спутниковой связи, обеспечивающей беспроводной доступ к сети Интернет в авиации, логистике, ритейле и других отраслях.

Современные спутниковые технологии обеспечивают связь в пюбой точке Земпи

Система wIFC/wIFEC (wireless In-Flight Connectivity, wireless In-Flight Entertainment and Connectivity) — совокупность услуг широкополосной (высокоскоростной) спутниковой связи, обеспечивающих беспроводной доступ к сети Интернет, а также доступ к медиаразвлечениям для пассажиров во время полета.

Ключевыми технологиями спутникового wIFC/wIFEC являются геостационарные спутники (Geosynchronous Equatorial Orbit – GEO) в Ки/Ка-диапазонах, обеспечивающие широкое покрытие, и низкоорбитальные группировки (LEO), такие как Starlink, предлагающие сверхнизкую задержку и высокую скорость. Индустрия переживает переход от GEO к LEO-решениям, что кардинально улучшает качество связи, позволяя использовать в полете потоковое видео, видеозвонки и онлайнигры.

Одной из ключевых технологий wIFC/wIFEC является iDirect Velocity – признанный в мире «золотой» стандарт спутниковой связи в движении SOTM (Satellite Communications On The Move).

Технология iDirect Velocity обеспечивает «бесшовное» переключение абонентов между спутниками при движении на высоких скоростях (свыше 800 км/ч – на борту самолета), гарантируя непрерывное и надежное Интернетсоединение.

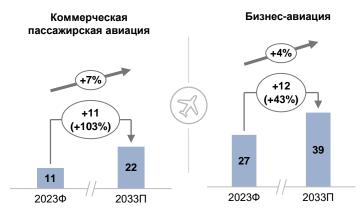
Мобильная спутниковая связь (Mobilesatellite service, MSS) представляет собой систему, состоящую из спутников связи и наземных станций, которая обеспечивает передачу голоса, данных и текстовых сообщений между мобильными и портативными устройствами.

Спутниковые системы связи обеспечивают полное покрытие поверхности Земли, включая полярные регионы Арктики и Антарктики. Технические характеристики сети позволяют осуществлять двустороннюю передачу данных и речевых сообщений в отдаленных районах, где отсутствуют альтернативные средства связи.

Система MSS включает в себя три основные составляющие:

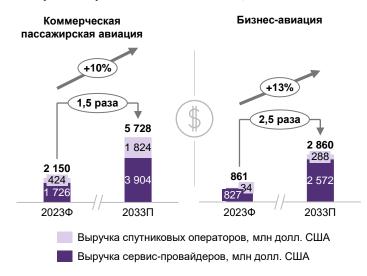
- Космический сегмент используемые космические аппараты (КА), размещенные на низкой околоземной орбите высотой около 780 км и обеспечивающие спутниковые каналы связи.
- Наземный сегмент инфраструктура управления сетью и наземные шлюзы. Инфраструктура управления сетью отвечает за техническую поддержку и управление спутниковой группировкой, наземные шлюзы – за обработку абонентских вызовов и передачу данных.
- Абонентское оборудование специальные устройства, настроенные на работу с сетью (спутниковые телефоны).

VSAT (*Very Small Aperture Terminal, терминал с очень малой апертурой антенны*) – самая передовая в мире технология спутниковой широкополосной связи, которая обеспечивает высокоскоростное Интернет-соединение с помощью абонентских терминалов (VSAT-станций).


Данная технология организовывает каналы доступа к сетевым сервисам с использованием спутников связи на геостационарной орбите (ГСО) и абонентского терминала (VSAT-станции), включающего малоразмерную антенну и спутниковый модем. Современные VSAT-системы обеспечивают скорости передачи данных, сопоставимые с начальными уровнями проводной оптоволоконной связи, и являются оптимальным решением для удаленных и труднодоступных регионов.

Центральным звеном архитектуры VSATсетей является Центр управления сетью (ЦУС) оператора. Передача данных осуществляется по схеме «запросответ»: сигнал от абонентского терминала через спутник поступает в ЦУС, где оператор обрабатывает его, получает данные из внешней сети и отправляет ответ обратно на VSATтерминал абонента через спутниковый канал.

VSAT-оборудование изготавливается как в наземном (передвижном, стационарном), так и в морском (в т. ч. речном) исполнении.


По прогнозам Novaspace, мировой парк гражданской авиации, оснащенный системами доступа в Интернет и сервисами развлечений в полете, к 2033 г. вырастет более, чем в 1,5 раза

Мировой рынок wIFEC в 2023–2033 гг. в натуральных показателях: число воздушных судов, оборудованных системами доступа в Интернет и сервисами развлечений в полете, тыс. шт.

Источник: Prospects for In-Flight Connectivity press release (Novaspace, октябрь 2024 г.), анализ ФБК

Мировой рынок wIFEC в 2023–2033 гг. в стоимостных показателях: доходы участников рынка от предоставления услуг доступа в Интернет и сервисов развлечений в полете, млн долл. США

Источник: Prospects for In-Flight Connectivity press release (Novaspace, октябрь 2024 г.), анализ ФБК

Мировой рынок wIFEC – динамично развивающийся сегмент глобального рынка спутниковой связи.

Как самостоятельное направление рынок wIFEC начал формироваться в 1960-х гг., когда авиакомпании столкнулись с необходимостью расширять спектр услуг, предлагаемых на борту самолетов, в условиях роста авиаиндустрии и конкуренции за пассажиров.

Развитие цифровых технологий дополнительно стимулировало рост рынка wIFEC: увеличение числа онлайн-сервисов и персональных мобильных устройств, поддерживающих технологии беспроводного доступа в Интернет (смартфоны, планшеты, портативные компьютеры), изменили потребительские ожидания — выросла потребность пассажиров оставаться на связи даже на авиационном транспорте.

Исследование спутникового оператора Viasat (Passenger Experience Survey, 2024 г.) показало, что подключение к сети Интернет в полете больше не рассматривается пассажирами как дополнительная услуга, а воспринимается как стандарт и необходимая составляющая сервиса авиакомпаний. При этом качество и доступность услуг wIFEC являются взаимосвязанными факторами, определяющими уровень удовлетворенности пассажиров.

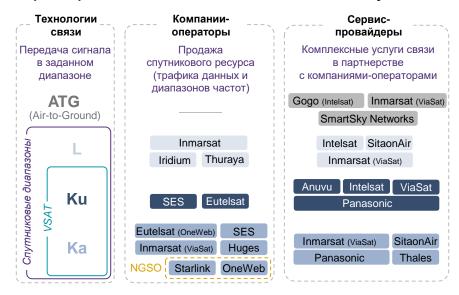
Можно выделить следующие основные драйверы роста мирового рынка wIFEC:

- увеличение пассажиропотока;
- постепенное обновление парков авиакомпаний*;
- растущие требования пассажиров к качеству и доступности услуг связи на борту.

По прогнозам Novaspace, с учетом вышеуказанных драйверов роста мировой парк гражданских воздушных судов (BC)**, оснащенных системами wIFEC, будет стабильно расти в долгосрочной перспективе с CAGR (2023–2033 гг.) около 7% в год.

Еще одной важной современной тенденцией является постепенный переход авиакомпаний к модели условнобесплатного предоставления доступа в Интернет во время полета, предусматривающей включение затрат в стоимость авиабилетов (т. е. без взимания с пассажиров дополнительной платы за потребленный во время полета трафик):

- предоставляют wIFEC-услуги без дополнительной платы (2024 г.): Delta Air Lines (США), Alaska Airlines (США), Singapore Airlines (Сингапур), China Eastern (КНР)***;
- объявили о намерении перейти на предоставление wIFEC-услуг без дополнительной платы: United Airlines (США), Air France (Франция), Turkish Airlines (Турция), Qatar Airways (Катар).


^{*} Новые BC, поступающие в парки авиакомпаний, могут оснащаться wIFEC-системами еще на этапе цеховой сборки на заводах-изготовителях – такая схема комплектации BC называется LineFit. Схема дооснащения BC wIFEC-системами после их передачи авиаперевозчикам называется RetroFit.

^{**} Гражданская авиация включает коммерческую пассажирскую авиацию и бизнес-авиацию.

^{***} С некоторыми ограничениями.

Спутниковая связь Ku- и Ka-диапазонов доминирует в коммерческой авиации благодаря широкому покрытию территорий «море + суша» и высоким скоростям передачи данных

Мировой рынок wIFEC: технологии связи и основные участники

Источник: Prospects for In-Flight Entertainment and Connectivity (Euroconsult, (июль 2021 г.), открытые источники, анализ ФБК

Сегментация мирового рынка wIFEC по видам технологий связи на гражданских BC

Примечание: доли рынка по видам технологии связи приведены по данным на 2020 г.

Источник: Prospects for In-Flight Entertainment and Connectivity (Euroconsult, июль 2021 г.), Prospects for In-Flight Connectivity press release (Novaspace, октябрь 2024 г.), анализ ФБК

На мировом рынке wIFEC применяются две основные технологии связи – технология Air-to-Ground (ATG) между самолетами и наземными системами и спутниковые технологии (радиочастотные диапазоны L, Ku и Ka).

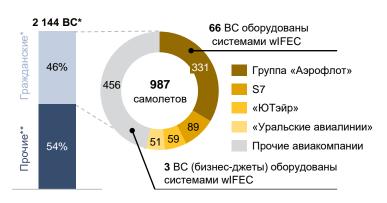
Характерные особенности технологии **ATG**:

- основана на сети наземных базовых станций;
- имеет относительно невысокую скорость передачи данных (в базовом варианте – до 10 Мбит/с);
- ограничена зонами покрытия (работает только над сушей, не может быть использована в трансконтинентальных перелетах).

Характерные особенности спутниковой связи:

- доминирует на рейсах пассажирской авиации благодаря глобальному покрытию;
- предусматривает возможности подключения как в узкополосном (низкоскоростном) L-диапазоне (скорость передачи данных до сотен кбит/с), так и в широкополосных (высокоскоростных) Кu- и Кa-диапазонах (скорость передачи данных – сотни Мбит/с и выше).

По оценкам Euroconsult, одним из технологических трендов мирового рынка wIFEC является постепенный переход на широкополосную спутниковую связь Ки- и Кадиапазонов (см. диаграмму слева). Данный тренд вызван следующими факторами:


- широкополосная спутниковая связь обеспечивает глобальное покрытие, включая зоны полетов над океанами, где технология ATG недоступна:
- скорости передачи данных в Ки- и Кадиапазонах существенно превосходят возможности узкополосной связи L-диапазона.

По прогнозам Novaspace, дополнительным фактором развития мирового рынка wIFEC послужит активное развитие нового поколения негеостационарных спутниковых NGSO-группировок. Так, по состоянию на I кв. 2025 г. многие мировые авиаперевозчики, включая airBaltic (Европа), SAS (Европа), Air France (Франция), Hawaiian Airlines (США), United Airlines (США),Qatar Airways (Катар) и др., либо уже используют NGSO-спутниковую связь Starlink от компании SpaceX (США), либо объявили о планах оснащения своих воздушных судов wIFEC-системами, работающими со Starlink.

^{**} Air-to-Ground (ATG).

Российский рынок wIFEC отстает от мирового из-за технических и экономических барьеров. В 2025 г. в РФ только одна компания может обеспечить услугу «Интернет на борту»

Парк воздушных судов РФ по состоянию на 2025 г.

- * Гражданские ВС включают коммерческие пассажирские самолеты и бизнес-авиацию.
- ** К прочим BC относятся вертолеты, грузовые самолеты, другие некоммерческие самолеты.

Источник: Росавиация, данные компаний отрасли, анализ ФБК

Внедрение сервисов wIFC/wIFEC российскими авиакомпаниями по состоянию на 2025 г.

Авиакомпании, которые могут предоставлять*** комплексную услугу wIFC/wIFEC (доступ в Интернет + развлекательные сервисы)

Авиакомпании, которые предоставляют только ограниченную услугу **wIFE** (развлекательные сервисы без доступа в Интернет)

Авиакомпании, которые не предоставляют услуги wIFC/wIFEC для своих пассажиров

и прочие

Примечание: авиакомпании «Россия» и «Победа» входят в группу «Аэрофлот».

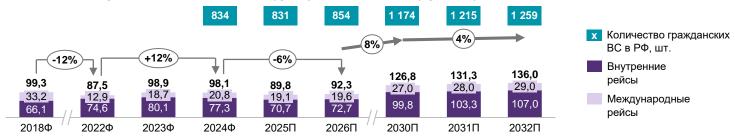
Источник: информация из открытых источников, анализ ФБК

- *** По состоянию на середину 2025 г. услуги wIFEC на борту самолетов ПАО «Аэрофлот» не оказываются.
- **** Входит в структуру российской многопрофильной технологической группы «ИКС Холдинг».

Российский рынок wifec находится на начальной стадии развития и существенно отстает от зарубежных рынков: уровень оснащения гражданских BC в РФ системами спутниковой связи для доступа в Интернет значительно уступает показателям развитых стран (см. диаграмму слева). Основными причинами являются технические и экономические ограничения:

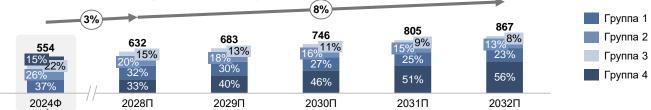
- отсутствие в РФ собственной технологической базы ввиду санкций (оборудования спутниковой связи для авиации). Официальные поставки оригинального оборудования wIFEC в РФ прекращены с 2022 г.; начиная с этого периода компаниями велись поиски альтернативных поставщиков, в частности китайских, однако по состоянию на середину 2025 г. поставки из КНР не осуществлялись.
- значительные затраты на установку wIFEC-систем. Например, стоимость wIFEC-комплекта для оснащения одного самолета Airbus модели A320/A321 составляет ориентировочно 0,5 млн долл. США (по состоянию на 2024 г.)

Целевой аудиторией рынка wIFEC в РФ выступают авиакомпании, заинтересованные в повышении качества обслуживания пассажиров на борту и расширении спектра доступных услуг, а также владельцы бизнес-джетов. Основным инициатором развития рынка является ПАО «Аэрофлот» (далее — «Аэрофлот»), имеющее техническую возможность оказывать полноценную услугу wIFEC своим пассажирам (доступ в Интернет и развлекательные сервисы). По состоянию на дату исследования услуги wIFEC не оказывались из-за санкционных ограничений. Партнерская сеть Panasonic Avionics (США) отключила с 2022 г. свое wIFEC-оборудование, установленное на ВС ПАО «Аэрофлот». Кроме того, компания «Аэрофлот» приняла решение о временной приостановке оказания услуг wIFEC на ВС.


Остальные крупные российские авиаперевозчики предоставляют пассажирам только мультимедиа-контент без доступа в Интернет (*см. схему слева*).

Несмотря на санкционные ограничения, согласно ожиданиям игроков рынка, что российский рынок wIFEC будет расти в соответствии с мировыми трендами, но с временным лагом. Ключевыми драйверами его развития выступят: постепенное увеличение уровня проникновения wIFEC-услуг за счет общего роста пассажиропотока, обновления авиапарка и повышения спроса со стороны авиакомпаний, стремящихся повысить лояльность пассажиров.

Дополнительным фактором, который в перспективе может способствовать развитию рынка wIFEC в РФ, выступает формирование собственной национальной спутниковой инфраструктуры нового поколения. Важным шагом в этом направлении является инициатива российской компании «Бюро 1440»**** по созданию отечественной NGSO-группировки из 292 спутников связи (аналог американской системы Starlink от компании SpaceX). Реализация полного объема программы планируется до 2030 г., однако сроки ее завершения в условиях санкционных ограничений (отсутствие доступа к качественной западной электронной компонентной базе (ЭКБ)) не могут считаться определенными.


Российский рынок wIFEC обладает значительным потенциалом. К 2032 г. количество воздушных судов, которые могут быть оснащены wIFC/wIFEC-системами, прогнозируется на уровне 867

Объем пассажиропотока в 2018–2024 гг. (факт) и 2025–2033 гг. (прогноз) в РФ, млн чел.

Источник: распоряжение Правительства РФ от 25.06.2022 г. № 1693-р, ЕМИСС, анализ ФБК

Потенциал российского гражданского авиапарка, который может быть оборудован wIFC/wIFEC-системами, в 2024–2032 гг., шт.

Группа 2 (146 шт.) ВС группы «Аэрофлот», не включенные в группу 1 Модели ВС

> • Ty-204 • MC-21 • Ил-96 • Ty-214 • SSJ • Ил-114

Группа 3 (120 шт.) BC Airbus A320/A321 прочих авиакомпаний РФ **Модели BC**

• A320 • A321

Группа 4 (82 шт.) ВС производства РФ

Модели ВС

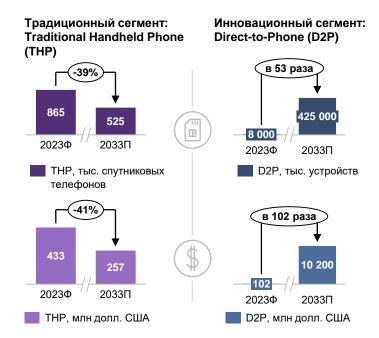
• Ту-204 • МС-21 • Ил-96 • Ту-214 • SSJ • Ил-114

Источник: распоряжение Правительства РФ от 25.06.2022 г. № 1693-р, ЕМИСС, анализ ФБК

В рамках настоящего исследования был выполнен прогноз российского рынка wIFEC. Рынок wIFEC в РФ прогнозировался исходя из ожидаемого пассажиропотока, а также количества гражданских BC, которые могут быть оборудованы wIFC/wIFEC-системами, в расчете на 1 млн пассажиров.

Пассажиропоток в РФ рассчитан исходя из следующих допущений:

- прогноз до 2030 г. основан на действующей редакции документа «Комплексная программа развития авиатранспортной отрасли Российской Федерации до 2030 года» (Распоряжение Правительства РФ от 25.06.2022 г. № 1693-р, далее – «Программа развития»);
- для периода 2030–2033 гг. использован среднегодовой темп прироста пассажиропотока в 2022–2030 гг. (3,6%);
- для проверки предпосылок роста пассажиропотока учтены данные IATA из отчета Global Outlook for Air Transport за 2024 г., согласно которому мировой темп прироста пассажиропотока до 2043 г. составит 3,8% в год.


Расчет размера гражданского авиапарка в РФ был основан на прогнозе количества авиапассажиров. Для расчета числа воздушных судов, которые могут быть оборудованы wIFC/wIFEC-системами, был применен следующий подход:

 на первом этапе был определен общий парк гражданских ВС в РФ (*Total Addressable Market, TAM*). С учетом коэффициента, равного 9,3 ВС на 1 млн авиапассажиров (среднее значение за период с 2018 по 2024 г.), было рассчитано увеличение общего парка с 834 ВС в 2024 г. до 1 259 в 2032 г.;

- 2. на втором этапе в составе ТАМ был выделен сегмент, включающий только те модели ВС, которые с наибольшей вероятностью могут быть оснащены wIFC/wIFEC-системами. Прогнозируемый размер данного сегмента к 2032 г. оценивается в 867 ВС. Прогноз авиапарка выполнен с учетом следующих допущений:
 - в расчетах учитываются самолеты группы «Аэрофлот», Airbus A320/321, принадлежащие прочим авиакомпаниям, и самолеты отечественного производства;
 - ожидается постепенный отказ от зарубежных ВС в пользу российских. Этот подход совпадает со стратегией ПАО «Аэрофлот» от 2023 г., которая предусматривает увеличение доли отечественных ВС в общем парке группы с 20 до 70% к 2030 г.;
 - учитывается вывод из эксплуатации зарубежных моделей ВС (*группы 1–3, см. диаграмму вверху*), российских Sukhoi Superjet SSJ-100 (*группа 1*) и Туполева Ту-204 (*группа 4*) по достижении среднего срока службы: 22,5 года для узкофюзеляжных ВС и 27,5 года для широкофюзеляжных ВС;
 - ожидается перенос начала поставок отечественных BC с 2025 г. (плановый срок согласно вышеуказанной Программе развития*) на 2026 г.;
 - выполнение плана производства отечественных ВС ожидается на уровне 50% от объема, заявленного в Программе развития (производство 587 самолетов до 2030 г.).

По прогнозу Novaspace, мировой рынок мобильной спутниковой телефонной связи будет расти за счет развития инновационной технологии

Прогноз мирового рынка мобильной спутниковой телефонной связи в натуральных и стоимостных показателях

Источник: Prospects for Direct to Handheld and IoT Markets (Novaspace, 2024 г.), анализ ФБК

Мировое распространение мобильной спутниковой связи (Mobile-satellite service, MSS) началось в 1970-х гг. Первой международной гражданской платформой MSS стала британская компания Inmarsat, основанная в 1979 г. и первоначально ориентированная на обеспечение телефонной связи на морских судах. Позже Inmarsat расширила свои услуги, начав предоставлять MSS-сервисы для авиации и наземных пользователей.

В 1990-х гг. на рынке появились новые игроки. В 1998 г. компания Iridium (США) запустила первую глобальную спутниковую систему низкоорбитальных спутников, обеспечивающих 100%-е покрытие поверхности Земли, включая оба полюса. В том же году услуги MSS начала предоставлять другая американская компания — Globalstar, а в начале 2000-х на мировой рынок вышла компания Thuraya (ОАЭ), предоставляющая региональные услуги.

Успех компаний-операторов был предопределен уникальным характером сервиса — обеспечением связи в удаленных и труднодоступных регионах. В настоящее время рынок MSS остается «нишевым» вследствие повышенной стоимости оборудования и услуг, а также ограниченной целевой аудитории.

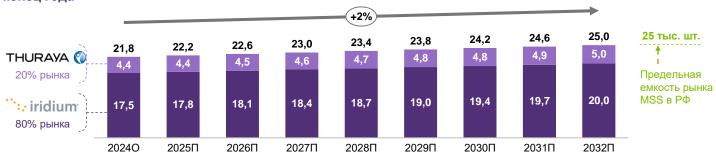
В современной структуре мирового рынка MSS выделяют два основных сегмента:

- Традиционный связь при помощи специального спутникового телефонного аппарата («трубки»), настроенного на работу с конкретной спутниковой группировкой;
- Инновационный связь по прямому каналу между спутником и стандартным, немодифицированным сотовым телефоном Direct-to-Phone (D2P).

По прогнозам Novaspace, в будущем объем традиционного сегмента мирового рынка MSS будет снижаться в стоимостном и натуральном выражении (см. диаграммы слева). Основной драйвер рынка – активное развитие D2P.

Российский рынок мобильной спутниковой связи имеет перспективы с учетом обширной географии России и наличия и наличия отдаленных районов, не обеспеченных сотовой связью.

В январе 2024 г. компания «МегаФон» представила планы по развитию инфраструктуры до 2030 г. В рамках развития стратегии отрасли связи «МегаФон» планирует построить сети 5G и гибридные сети беспроводной связи со спутниковой инфраструктурой. «Мы считаем, что создание гибридных сетей мобильной и спутниковой связи — один из ключевых приоритетов дальнейшего развития отрасли уже в среднесрочной перспективе. Это позволит эффективно решать задачи расширения покрытия сети и повышения скорости беспроводной связи», — сообщил представитель пресс-службы «МегаФона». Стратегия «МегаФона» в области развития спутниковой связи на негеостационарных орбитах (НГСО) будет реализовываться через существующее партнерство с «Бюро 1440»


В 2025 г. компания МТС провела стендовые испытания прототипа базовой станции 5G по технологии гибридной неназемной сотовой связи NTN (Non-Terrestrial Networks) с имитацией работы смартфона через спутниковый канал. Как сообщили представители компании, это первый этап программы, нацеленной на запуск услуг мобильной спутниковой связи к 2030 г. «В последние годы в мире активно развиваются спутниково-сотовые системы связи, операторы в партнерстве со спутниковыми компаниями тестируют и разворачивают гибридные сети. С учетом обширной географии России и низкой плотности населения внедрение технологии неназемных беспроводных сетей 5G NTN обеспечит всю территорию страны сплошным покрытием услугами мобильной связи», — отметил вице-президент по телекоммуникационной инфраструктуре МТС Виктор Белов.

Компания МТС сообщила, что «на начальном этапе коммерциализации услуги в России потребуется группировка из 200 спутников, для обеспечения уверенного покрытия страны – от 500 и более».

Источник: ComNews, «МТС испытала прототип базовой станции 5G для гибридной спутниковой связи» (МТС, август 2025 г.), Газета.ru, анализ ФБК

Глобальный спутниковый оператор Iridium – лидер российского рынка мобильной спутниковой телефонной связи с долей около 80%

Объем российского рынка мобильной спутниковой телефонной связи в 2024–2032 гг., тыс. устройств на конец года

Примечание: до 2022 г. на рынке MSS в РФ была представлена третья компания-оператор – Globalstar (США), приостановившая оказание услуг в связи с санкционными ограничениями.

Источник: данные игроков рынка, анализ ФБК

По состоянию на дату исследования на российском рынке MSS свои услуги предлагали только два оператора: Iridium (США) и Thuraya (ОАЭ). Собственные спутниковые MSS-группировки – аналоги зарубежных платформ в РФ отсутствуют. Российская группировка спутников связи «Гонец» не является конкурентной на рынке MSS, т. к. ее технические возможности не позволяют передавать голосовые данные в реальном времени.

Спутники Iridium – единственные, обеспечивающие связь в районах российского Крайнего Севера, где другие космические аппараты не обеспечивают полноценное покрытие и надежную трансляцию сигнала. В совокупности с высокой стабильностью связи и низкой задержкой передачи данных указанная особенность связи Iridium определила устойчивые рыночные позиции компании в РФ: по состоянию на 2024 г., согласно данным экспертов рынка, доля Iridium на российском рынке MSS составила около 80%, а остальной объем пришелся на абонентов Thuraya.

В РФ интересы компании Iridium представляет ее дочерняя структура – ООО «Иридиум Коммьюникешенс». Для работы российского операционного бизнеса в 2022 г. компания получила разрешение российской Государственной комиссии по радиочастотам (ГКРЧ) на использование рабочих частот в РФ сроком на 10 лет. Государственное разрешение на использование радиочастот Iridium в РФ действует до 2032 г.

По аналогии с мировым рынком MSS, его российский сегмент остается «нишевым» из-за ограниченной целевой аудитории и высокой стоимости оборудования и услуг.

Профильные специализированные исследования российского рынка MSS отсутствуют. В этой связи выводы о характеристиках этого рынка и прогнозы были сделаны на основе данных отраслевых экспертов. В частности, по сведениям игроков рынка, российский рынок MSS близок к насыщению, а его предельная емкость составляет 25 тыс. активных устройств. Основной драйвер роста — потребность B2B/B2G клиентов в услугах спутниковой связи.

Российские операторы мобильной спутниковой связи оказывают услуги голосовой связи от имени Iridium и Thuraya с использованием спутниковых телефонов.

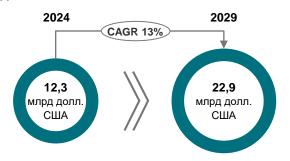
Услуги компании Iridium в РФ не затронуты санкциями. Запрет введен только на прямые поставки оригинального оборудования в РФ.

У компании Iridium в РФ пять уполномоченных агентов, оказывающих услуги мобильной спутниковой телефонной связи.

Российские агенты в рыночном сегменте:

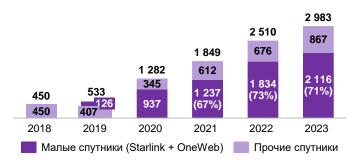
- «СТЭККОМ»;
- ООО «Спутниковые Мобильные Технологии»;
- ФГУП «Морсвязьспутник»;
- ООО «Саттранс»;
- AO «МВС Телеком».

Партнерские отношения российских операторов связи со спутниковыми провайдерами имеют важное значение для развития мобильной спутниковой связи в России.



«Технология NTN в режиме D2C (Direct to Cellular), или «спутник-смартфон», предусматривает обеспечение через низкоорбитальные спутники всех услуг мобильной связи на земле в точках, где отсутствует покрытие наземных сотовых сетей».

Источник: Газета.ru, анализ ФБК


По оценкам The Business Research Company, объем мирового рынка спутниковой связи VSAT вырастет почти в два раза в период 2025–2029 гг.

Объем мирового рынка спутниковой связи VSAT, млрд долл. США

Источник: VSAT Global Market Report (The Business Research Company, 2025 г.), анализ ФБК

Количество спутников, ежегодно выводимых на орбиты Земли, в 2018–2023 гг., шт.

Источник: BryceTech (2019–2024 гг.), анализ ФБК

Подключение гражданских судов к морскому VSAT в мире в 2018–2033 гг., тыс. шт. на конец года

— Уровень проникновения морского VSAT в мире, %

Источник: UNCTAD, Novaspace (пресс-релизы, 2019–2024 гг.), анализ $\Phi \mathsf{Б} \mathsf{K}$

Мировой рынок спутниковой связи VSAT начал формироваться в начале 1980-х гг. с появлением первых коммерческих доступных терминалов с компактными антеннами (VSAT-станций). VSAT-станция обеспечивает пользователям двустороннюю спутниковую связь для передачи данных, голоса и видеосигнала, гарантируя устойчивое широкополосное (высокоскоростное) соединение.

Растущая потребность в услугах связи, в т. ч. в регионах, где отсутствует наземная инфраструктура (радио- или сотовые вышки, оптоволоконные линии), предопределила успех технологий VSAT на мировом рынке. В современной структуре рынка в зависимости от типа платформы (т. е. места базирования приемного терминала VSAT) выделяют три сегмента:

- наземный (передвижной, стационарный) VSAT;
- морской VSAT;
- воздушный VSAT.

В настоящее время основными драйверами роста мирового рынка спутниковой связи VSAT являются:

- рост спроса на услуги связи и высокоскоростной интернет в удаленных и труднодоступных регионах, а также государственные инициативы по цифровизации отраслей экономики;
- увеличение потребности в широкополосных соединениях для поддержки облачных приложений и развития Интернета вещей (M2M/IoT);
- рост спроса на мобильные VSAT-решения для морского и воздушного транспорта.

Новым направлением, стимулирующим развитие рынка VSAT, являются инновационные низкоорбитальные группировки малых КА (Smallsat): Starlink и OneWeb, — которые обеспечивают более высокую скорость передачи данных через VSAT-станции с меньшими задержками сигнала по сравнению с «традиционной» технологией VSAT, которая работает с геостационарными КА. Начиная с 2020 г. количество ежегодных запусков КА в классе Smallsat существенно превысило запуски КА прочих классов.

Технологические инновации способствуют снижению ценовых барьеров в стоимости оборудования (VSAT-станции) и тарифах на услуги передачи данных через спутники. В связи с этим морской VSAT является активно растущим сегментом рынка, где основной спрос сформирован торговым флотом. Ограничения в период пандемии COVID-19 вызвали временное снижение спроса на услуги спутниковой связи, что привело к локальному отключению части морских судов от услуг VSAT в 2020 г. Начиная с 2021 г. сегмент морского VSAT восстановил свой рост, и к 2033 г., по оценкам Novaspace, количество подключенных к VSAT морских судов составит почти 90 тыс. шт.

Ожидается, что VSAT-решения на базе КА в классе Smallsat, запускаемых на низкие орбиты Земли, не заменят полностью «традиционные» VSAT, но сделают их резервным способом передачи данных. Так, в сегменте морского VSAT формируется новый тренд: владельцы судов применяют гибридный подход, устанавливая одновременно терминалы связи «традиционного» VSAT и VSAT на базе Smallsat.

С учетом данных особенностей рынка уровень проникновения морского VSAT в 2033 г. (66%) был рассчитан следующим образом:

- прогноз числа морских судов, подключенных к услугам VSAT в 2033 г., принят согласно прогнозу Novaspace;
- прогноз общего числа судов в составе гражданского морского флота рассчитан на основе исторических темпов роста флота по данным UNCTAD.

© 2025 ФБК. Все права защищены.

Наземный сегмент российского рынка спутниковой связи VSAT имеет ограниченный потенциал роста из-за высокого уровня проникновения VSAT-решений и отсутствия новых крупных проектов

Число подключенных VSAT-станций в наземном сегменте рынка спутниковой связи* в РФ в 2019–2032 гг. (накопленным итогом по данным ComNews), тыс. шт.

^{*} Приведены данные по VSAT-станциям, относящимся к пользователям категорий B2B/B2G.

Источник: «VSAT-cemu в России» (ComNews, 2019–2024 гг.), данные компаний отрасли, анализ ФБК

Структура наземного сегмента рынка спутниковой связи VSAT** в РФ по основным провайдерам

^{**} Приведены данные по VSAT-станциям, относящимся к пользователям категорий B2B/B2G.

Источник: «VSAT-cemu в России» (ComNews, 2019–2024 гг.), данные компаний отрасли, анализ ФБК

Российский рынок связи VSAT, аналогично мировому, представлен технологическими решениями в наземном, морском и воздушном сегментах. По данным ComNews, на конец 2024 г. наземный сегмент рынка VSAT в РФ насчитывал около 55 тыс. подключенных VSAT-станций. Согласно экспертному мнению игроков рынка, указанный натуральный объем завышен по следующим причинам:

- данные ComNews базируются на опросах российских компаний-провайдеров, и независимая верификация полученных сведений со стороны ComNews не проводится;
- показатель «подключенные VSAT-станции», который приводит ComNews, фактически отражает весь объем исторических продаж на российском рынке накопленным итогом, т. е. учитывает как активные, так и неактивные (отключенные и не используемые) терминалы VSAT;
- данные ComNews не скорректированы на число «субподключений», т. е. терминалов, учитываемых в статистике продаж между провайдерами.

Профессиональные исследования наземного сегмента рынка спутниковой связи VSAT в РФ отсутствуют. В связи с этим прогноз развития данного сегмента строился на основе следующих допущений:

- наземный сегмент российского рынка спутниковой связи VSAT представлен преимущественно проектами по оборудованию объектов энергетической, нефтегазовой, горнодобывающей и транспортной отраслей;
- сегмент имеет ограниченный потенциал роста из-за высокого уровня проникновения VSAT-решений и отсутствия новых масштабных проектов по оборудованию российских промышленных объектов VSAT-станциями;
- прогнозируемый темп прироста VSAT-подключений в 2025–2032 гг. замедлится до уровня долгосрочного темпа прироста реального ВВП РФ;
- долгосрочный темп прироста реального ВВП РФ принят на уровне 0,7% согласно макроэкономическим прогнозам Oxford Economics от декабря 2024 г.

По оценкам ComNews, в наземном сегменте рынка спутниковой связи VSAT в РФ лидируют четыре сервиспровайдера (см. диаграмму слева). Объемы продаж прочих сервис-провайдеров несущественны и данные по ним отсутствуют в открытом доступе.

Оборудование VSAT на российском рынке представлено продукцией зарубежных производителей: Hughes Network Systems (США), ST Engineering iDirect (Сингапур), Comtech (США) и Gilat (Израиль), которые прекратили официальные поставки в 2022 г. В настоящее время российские компаниипровайдеры используют альтернативные каналы поставок по системе параллельного импорта, легализованного в РФ. При этом в рамках политики импортозамещения в РФ разрабатывается собственное VSAT-оборудование, которое в перспективе может составить конкуренцию зарубежным образцам. В октябре 2024 г. на конференции SatComRus 2024 АО «РТКомм.РУ» представило опытный образец VSAT-модема и объявило о работе над созданием наземной инфраструктуры VSAT.

Морской сегмент российского рынка спутниковой связи VSAT сохраняет потенциал роста в долгосрочной перспективе с учетом национальных целей РФ по увеличению гражданского флота

Количество судов, подключенных к связи VSAT, в морском сегменте рынка РФ в 2019–2036 гг. (накопленным итогом по данным ComNews), шт.

Источник: «VSAT-сети в России» (ComNews, 2019–2024 гг.), ФСГС, Единый план по достижению национальных целей развития Российской Федерации до 2030 г. и на перспективу до 2036 г. (утвержден Правительством РФ 09.01.2025 г.), анализ ФБК

Структура морского сегмента рынка спутниковой связи VSAT в РФ по основным провайдерам

Источник: «VSAT-cemu в России» (ComNews, 2019–2024 гг.), анализ ФБК

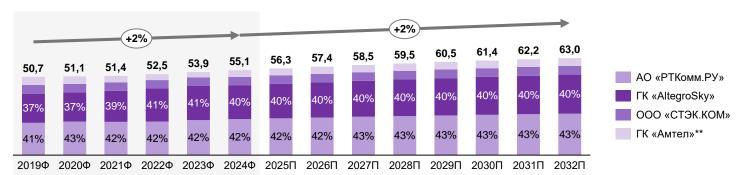
В отличие от наземного сегмента, морской сегмент рынка спутниковой связи VSAT в РФ демонстрирует активный рост: по оценкам ComNews, количество подключенных к VSAT морских судов в РФ за период с 2019 по 2024 г. удвоилось, превысив 1,6 тыс. кораблей.

Согласно экспертному мнению участников рынка, указанный натуральный объем не следует рассматривать как репрезентативный по тем же причинам, что и данные Сотмем в отношении наземного сегмента VSAT в РФ. При этом общее допущение о росте рынка подтверждается данными 2021 г.: провайдер телекоммуникационных услуг Orange (Франция) в своем исследовании «Российский рынок VSAT и IоT на морских судах» указал, что морской сегмент российского рынка VSAT и IоT по темпам роста опередил мировой в 2 раза и по объему выручки провайдеров в период 2018–2021 гг. вырос в 1,6 раза (с 396 млн руб. до 620 млн руб.).

Морской сегмент рынка спутниковой связи VSAT в РФ – исторически конкурентная ниша. При этом более 40% данного сегмента занимают компании с государственным участием – ФГУП «Космическая связь» и АО «РТКомм.РУ» – дочерняя компания ПАО «Ростелеком».

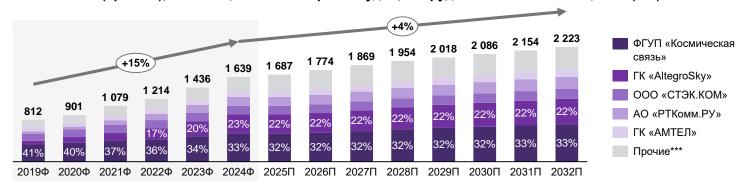
Морской сегмент рынка спутниковой связи VSAT в РФ сохраняет потенциал роста: РФ – одна из стран с самой большой протяженностью береговой линии, и рост проникновения VSAT будет обеспечен в т. ч. за счет развития судоходства на Северном морском пути, увеличения рыбопромыслового флота в рамках расширения инвестиционных квот на добычу водных биоресурсов и строительства новых судов обеспечения (вспомогательного флота). Дополнительным драйвером послужит увеличение потребности во внедрении инноваций и технических решений на базе Интернета вещей (M2M/IoT), например систем автоматического контроля топлива, мониторинга судовой безопасности, судовой телемедицины и др.

Профессиональные исследования морского сегмента рынка спутниковой связи VSAT в РФ отсутствуют, поэтому прогноз развития этого сегмента строился на основе данных из открытых источников с учетом следующих предпосылок:


- в 2025–2030 гг. прогноз ввода новых морских судов принят в соответствии с действующей редакцией документа «Единый план по достижению национальных целей развития Российской Федерации до 2030 г. и на перспективу до 2036 г.» (далее «Единый план»), утвержденного Правительством РФ 09 января 2025 г.:
- в 2031–2035 гг. прогноз ввода новых морских судов рассчитан с учетом целевого показателя Минпромторга России о строительстве более 1 000 судов до 2035 г.*: разница между данными «Единого плана» за 2025–2030 гг. (см. подпункт выше) и целевым показателем Минпромторга России равномерно распределена по годам;
- в 2036 г. прогноз ввода новых судов принят на уровне 2035 г.;
- уровень проникновения морского VSAT в РФ, рассчитанный на основе данных ComNews, увеличится с 44% в 2024 г. до 53% в 2036 г., что соответствует общемировому тренду.

© 2025 ФБК. Все права защищены.

^{*} Доклад заместителя министра промышленности и торговли РФ В. Л. Евтухова на ПМЭФ в июне 2024 г.


Наземный и морской сегменты российского рынка спутниковой связи VSAT характеризуются высокой конкуренцией

Рыночные доли основных игроков наземного сегмента рынка VSAT* в РФ в 2019–2024 гг. (факт) и 2025–2032 гг. (прогноз), % от общего числа подключенных VSAT-станций (тыс. шт.)

^{*} Приведены данные по VSAT-станциям, относящимся к пользователям категорий B2B/B2G.

Рыночные доли основных игроков морского сегмента рынка VSAT в РФ в 2019–2024 гг. (факт) и 2025–2032 гг. (прогноз), % от общего числа морских судов, оборудованных VSAT-станциями (шт.)

*** Прочие компании включают ООО «ТелематикаНЭТ», АО «Газпром космические системы» и других игроков рынка. Источник: «VSAT-cemu в России» (ComNews, 2019–2024 гг.), анализ ФБК

В историческом периоде 2019—2024 гг. в наземном сегменте наблюдалось незначительное усиление позиций дочерней компании ПАО «Ростелеком» — АО «РТКомм.РУ» (см. диаграмму вверху). ПАО «Ростелеком» с 2018 г. получило статус единого поставщика услуг фиксированной связи (в т. ч. услуг доступа в Интернет) для федеральных органов государственной власти РФ. Выход на российский рынок крупного игрока, использующего преференциальный статус единого поставщика, способствовал перераспределению клиентской базы между участниками рынка. В указанный период наблюдался отток части клиентов компаний отрасли, преимущественно государственных структур и компаний с государственным участием, к ПАО «Ростелеком».

Наличие особого статуса у ПАО «Ростелеком» как федерального оператора связи продолжит влиять на конкурентную среду российского рынка спутниковой связи VSAT и бизнес-перспективы менее крупных игроков.

Стоит также отметить, что в июне 2022 г. государственная корпорация по атомной энергии «Росатом» приобрела блокирующий пакет акций группы компаний «Амтел», которая предоставляет телекоммуникационные услуги на базе VSAT-технологии. Эта сделка облегчила АО «Амтел-Связь» как конкурирующему игроку потенциальный доступ к крупным государственным проектам, которые курирует ГК «Росатом».

С учетом вышесказанного, конкурентный потенциал остальных компаний в наземном сегменте российского рынка спутниковой связи VSAT будет ограничен.

В морском сегменте российского рынка спутниковой связи VSAT наблюдается аналогичная ситуация.

^{**} В группу компаний «Амтел» входят АО «Амтел-Связь», АО «Дозор-Телепорт» и ООО «ТелИнТел». Источник: «VSAT-cemu в России» (ComNews, 2019–2024 гг.), анализ ФБК

Игорь Чуркин

Старший партнер Руководитель Департамента оценки и консультационных услуг по сделкам

+7 926 382 9219 Igor.Churkin@fbk.ru

Елена Маркелова

Директор

Департамент оценки и консультационных услуг по сделкам

+7 968 641 3910 Elena.Markelova@fbk.ru

Елена Жук

Менеджер

Департамент оценки и консультационных услуг по сделкам

+7 909 593 6009 Elena.Zhuk@fbk.ru

ул. Мясницкая, 44, стр. 2, Москва, Россия, 101000

T: (495) 737 5353 Φ: (495) 737 5347 E: fbk@fbk.ru

fbk.ru fbk-pravo.ru fbkcs.ru

